Solar Power | Andhika’s Blog

Diposting pada

A parabolic collector concentrates sunlight onto a tube in its focal point.

Concentrated solar power (CSP), also called “concentrated solar thermal”, uses lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Contrary to photovoltaics – which converts light directly into electricity – CSP uses the heat of the sun’s radiation to generate electricity from conventional steam-driven turbines.

A wide range of concentrating technologies exists: among the best known are the parabolic trough, the compact linear Fresnel reflector, the Stirling dish and the solar power tower. Various techniques are used to track the sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage. Thermal storage efficiently allows up to 24-hour electricity generation.

A parabolic trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector’s focal line. The receiver is a tube positioned along the focal points of the linear parabolic mirror and is filled with a working fluid. The reflector is made to follow the sun during daylight hours by tracking along a single axis. Parabolic trough systems provide the best land-use factor of any solar technology. The SEGS plants in California and Acciona’s Nevada Solar One near Boulder City, Nevada are representatives of this technology.

Compact Linear Fresnel Reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating linear fresnel reflectors can be used in either large or more compact plants.

The Stirling solar dish combines a parabolic concentrating dish with a Stirling engine which normally drives an electric generator. The advantages of Stirling solar over photovoltaic cells are higher efficiency of converting sunlight into electricity and longer lifetime. Parabolic dish systems give the highest efficiency among CSP technologies. The 50 kW Big Dish in Canberra, Australia is an example of this technology.

A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers can achieve higher (thermal-to-electricity conversion) efficiency than linear tracking CSP schemes and better energy storage capability than dish stirling technologies. The PS10 Solar Power Plant and PS20 solar power plant are examples of this technology.

Hybrid Systems

A hybrid system combines (C)PV and CSP with one another or with other forms of generation such as diesel, wind and biogas. The combined form of generation may enable the system to modulate power output as a function of demand or at least reduce the fluctuating nature of solar power and the consumption of non renewable fuel. Hybrid systems are most often found on islands.

CPV/CSP System

A novel solar CPV/CSP hybrid system has been proposed, combining concentrator photovoltaics with the non-PV technology of concentrated solar power, or also known as concentrated solar thermal.

ISCC System

The Hassi R’Mel power station in Algeria, is an example of combining CSP with a gas turbine, where a 25-megawatt CSP-parabolic trough array supplements a much larger 130 MW combined cycle gas turbine plant. Another example is the Yazd power station in Iran.

PVT System

Hybrid PV/T), also known as photovoltaic thermal hybrid solar collectors convert solar radiation into thermal and electrical energy. Such a system combines a solar (PV) module with a solar thermal collector in a complementary way.

CPVT System

A concentrated photovoltaic thermal hybrid (CPVT) system is similar to a PVT system. It uses concentrated photovoltaics (CPV) instead of conventional PV technology, and combines it with a solar thermal collector.

PV Diesel System

It combines a photovoltaic system with a diesel generator. Combinations with other renewables are possible and include wind turbines.

PV-Thermoelectric System

Thermoelectric, or “thermovoltaic” devices convert a temperature difference between dissimilar materials into an electric current. Solar cells use only the high frequency part of the radiation, while the low frequency heat energy is wasted. Several patents about the use of thermoelectric devices in tandem with solar cells have been filed. The idea is to increase the efficiency of the combined solar/thermoelectric system to convert the solar radiation into useful electricity.

Development and Deployment


Opera Snapshot_2017-12-31_193109_en.wikipedia.org

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *